Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Nosocomiology ; 32(12):1894-1899, 2022.
Article in English, Chinese | GIM | ID: covidwho-2034134

ABSTRACT

OBJECTIVE: Due to the lack of effective monitoring of microbial spectrum of medical waste collection, transport, storage and transfer path, as well as the evaluation of disinfection effects in medical institutions, this study aimed to explore the microenvironment, prevention and control difficulties and management opinions of medical waste disposal path through the microbial analysis of the medical waste disposal path in model departments. METHODS According to the standard process, the environmental samples at different time periods before and after the disinfection of the medical waste disposal path in the model department were collected and analyzed. The drug resistance and molecular typing traceability of important pathogens were analyzed. And the dynamic effect of the whole path application of the disinfection scheme for medical waste disposal in the model department were evaluated. Efficient frequency and application effect of disinfection of and hygiene of relevant places and gloves were evaluated through environmental monitoring before and after disinfection. RESULTS Most of the isolated strains were environmental microorganisms, Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium were also isolated, and a multidrug-resistant A. baumannii strain was identified. Through typing and tracing the source, the multiple strains of A. Baumannii were found to be of different genetic origins and the two strains were from the same clonal line. Using original detection technology, no contamination of Salmonella and Shigella was found in the path. The new coronavirus and norovirus were not detected. However, the environmental pollution of rotavirus was obvious. CONCLUSION The risk of random transmission of rotavirus cannot completely solved by existing hand-sterilized regents. Timely or even frequent replacement of gloves is a simple solution in the workflow. The sterilized medical waste transfer vehicles are likely to become the pollution source of rotavirus after passing through a certain medical waste path. The medical waste disposal personnel should replace the rotating vehicle in time before entering other wards. In addition, due to the weak professional ability of cleaners, simple and easy process guidelines is the most effective solution at present.

2.
Eur J Med Chem ; 213: 113201, 2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1039337

ABSTRACT

The widespread nature of several viruses is greatly credited to their rapidly altering RNA genomes that enable the infection to persist despite challenges presented by host cells. Within the RNA genome of infections is RNA-dependent RNA polymerase (RdRp), which is an essential enzyme that helps in RNA synthesis by catalysing the RNA template-dependent development of phosphodiester bonds. Therefore, RdRp is an important therapeutic target in RNA virus-caused diseases, including SARS-CoV-2. In this review, we describe the promising RdRp inhibitors that have been launched or are currently in clinical studies for the treatment of RNA virus infections. Structurally, nucleoside inhibitors (NIs) bind to the RdRp protein at the enzyme active site, and nonnucleoside inhibitors (NNIs) bind to the RdRp protein at allosteric sites. By reviewing these inhibitors, more precise guidelines for the development of more promising anti-RNA virus drugs should be set, and due to the current health emergency, they will eventually be used for COVID-19 treatment.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Drug Repositioning , Enzyme Inhibitors/therapeutic use , Animals , Antiviral Agents/chemistry , COVID-19/epidemiology , Enzyme Inhibitors/chemistry , Humans , Nucleosides/chemistry , Nucleosides/therapeutic use , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL